"Optimal" microbiological procedures

Thomas Greve
Senior registrar, PhD
Clinical Microbiology
Aarhus University hospital Skejby
thomgrev@rm.dk

Topics

- Optimal sample
- What happens in the Clinical Microbiological Lab?
- Tissue samples >< Fluid samples
- Interpretation
- Culture-negative infections
- Effects of optimal samples
- Future in Microbiological Diagnostics

Optimal sample

- In general
 - Avoid antibiotic (AB) treatment prior to sampling
 - Reduce risk of contamination (instruments, sampling containers, laboratory precausion eg.)

Preferred antibiotic-free window: 2 weeks - sampling including perioperative AB

- Intra-operative tissue samples (Osteomylitis, PJI and FRI)
 - 4-6 deep-tissue samples
 - Infection-suspected tissue
 - Implant-bone interface
 - Different locations
 - No samples from a sinus tract or open wound
- Aspiration fluid sample (PJI)
 - Joint puncture

What happens in the Clinical Microbiological Lab?

- Intra-operative tissue samples
 - Received in separate containers
 - Tissue samples are divided into pieces
 - A freshly cut side of tissue is applied to 3 types of plates:
 Blood agar plate, Chocolate agar plate, and Anaerobic agar plate (K-vitamin + Cysteine)
 - A separate piece of tissue is applied to a thioglycolate enrichment broth (thio)
 - Incubation 14 days
 - Checked daily till day 4
 - Small samples are not divided, only put into thio
 - (If aspirate are received simultaneously it is treated as joint fluid)
 - Tissue beat-beating (homogenisation)
 - Sonication (Biofilm disruption)

What happens in the Clinical

Microbiological Lab?

What happens in the Clinical Microbiological Lab?

- Aspiration fluid samples (joint fluid)
 - Microscopy
 - 10 µl fluid spread on a Chocolate agar plate
 - 3-4 ml fluid is incubated for 5.6 day in a blood culture bottle (automated blood culture system)

Tissue samples >< Fluid samples

- 4-6 tissue samples (time to positivity* ≈ 1-4 days):
 - Multiple samples
 - Compare samples when polymicrobial findings
 - Ability to estimate the degree of positivity (e.g. 1 colony vs. 200 colonies)
 - Different specialised media including absorption of antibiotics in the media
- Fluid samples (time to positivity* ≈ hours 3 days):
 - Typically a diagnostic puncture = 1 sample
 - Microscopy find samples with 10⁴-10⁵ copies/mL
 - Blood culture systems, high sensitivity and specificity
 - Hard to estimate the degree of positivity

*Including susceptibility pattern

Interpretation

Guidelines, Deep tissue samples Infection confirmed:

- Major criteria 2 distinct species / 4-6 samples
 Infection likely:
- Combined clinical features + 1 distinct species / 4-6 samples

Guidelines, Aspiration fluid samples Infection likely:

Positive culture 1 distinct species

Distinct species are not clearly defined, maybe:

- Phenotypically identical (colony size, colour, smell etc)
- Identical susceptibility pattern
- Species identification -> MALDI-TOF MS

Interpretation?

- Infection confirmed despite AB treatment during sampling:
 - S. aureus, S. lugdunensis, P. aeruginosa, Enterobacterales (only one species), S. pyogenes, S. dysgalactiae
 - ≥ 3 samples with *S. epidermidis*, other KNS, *Corynebacterium* spp, Enterococci, *S. agalactiae*, Cutibacterium acnes (skin flora)
- Infection possible, no AB treatment during sampling:
 - The above
 - 2 samples with *S. epidermidis*, other KNS, *Corynebacterium* spp, *Enterococci*, *S. agalactiae*, *Cutibacterium* acnes (skin flora)
- Microbiological diagnostics not helpful sinus tract or open wound? :
 - ≥ 3 different species in different amounts (e.g. 2/5; 3/5; 4/5)
 - Combination of faecal flora and skin flora

Culture-negative infections

- AB treatment during sampling?
 - Yes,
 - Option to perform multiple specific PCR
 - 16S rDNA PCR and sequencing
 - Microbiome
 - No,
 - Maybe fastidious microorganisms
 - Option Microbiome
- Question the primary diagnosis?

Effects of optimal samples

- Patient
 - Effective treatment
 - Precise susceptibility pattern
 - AB with bactericidal effect (if possible)
 - Orally administered AB
 - Avoid unnecessary side-effects
 - Reduced antibiotic pressure on normal microbial flora
- Organisation
 - Reduces risk of antimicrobial resistance
 - Change to orally administered AB
 - In some cases continuous IV-infusion
 - Knowledge of pathogens and resistance patterns in Denmark

Future in Microbiological Diagnostics

Today, not implemented

 PCR panels with 20-40 pathogens designed for platforms that can be operated 24-7 (≈ 200 € / sample vs. 20 € / sample)

Near future

- Optimised separation/extraction of pathogens from human tissue
- Sequencing directly on sample material without prior culture or PCR
- PCR detection of pathogen components from blood

Future

- Many of the diagnostic methods used today still valid
- Sequencing of pathogens from blood

Thank you for your attention

