A Randomized, Controlled Trial of Total Knee Replacement

Søren T. Skou, P.T., Ph.D., Ewa M. Roos, P.T., Ph.D., Mogens B. Laursen, M.D., Ph.D., Michael S. Rathleff, P.T., Ph.D., Lars Arendt-Nielsen, Ph.D., D.M.Sc., Ole Simonsen, M.D., D.M.Sc., and Sten Rasmussen, M.D., Ph.D.

BACKGROUND
More than 670,000 total knee replacements are performed annually in the United States; however, high-quality evidence to support the effectiveness of the procedure, as compared with nonsurgical interventions, is lacking.

METHODS
In this randomized, controlled trial, we enrolled 100 patients with moderate-to-severe knee osteoarthritis who were eligible for unilateral total knee replacement. Patients were randomly assigned to undergo total knee replacement followed by 12 weeks of nonsurgical treatment (total-knee-replacement group) or to receive only the 12 weeks of nonsurgical treatment (nonsurgical-treatment group), which was delivered by physiotherapists and dietitians and consisted of exercise, education, dietary advice, use of insoles, and pain medication. The primary outcome was the change from baseline to 12 months in the mean score on four Knee Injury and Osteoarthritis Outcome Score subscales, covering pain, symptoms, activities of daily living, and quality of life (KOOS4); scores range from 0 (worst) to 100 (best).

RESULTS
A total of 95 patients completed the 12-month follow-up assessment. In the nonsurgical-treatment group, 13 patients (26%) underwent total knee replacement before the 12-month follow-up; in the total-knee-replacement group, 1 patient (2%) received only nonsurgical treatment. In the intention-to-treat analysis, the total-knee-replacement group had greater improvement in the KOOS4 score than did the nonsurgical-treatment group (32.5 vs. 16.0; adjusted mean difference, 15.8 [95% confidence interval, 10.0 to 21.5]). The total-knee-replacement group had a higher number of serious adverse events than did the nonsurgical-treatment group (24 vs. 6, P=0.005).

CONCLUSIONS
In patients with knee osteoarthritis who were eligible for unilateral total knee replacement, treatment with total knee replacement followed by nonsurgical treatment resulted in greater pain relief and functional improvement after 12 months than did nonsurgical treatment alone. However, total knee replacement was associated with a higher number of serious adverse events than was nonsurgical treatment, and most patients who were assigned to receive nonsurgical treatment alone did not undergo total knee replacement before the 12-month follow-up. (Funded by the Obel Family Foundation and others; MEDIC ClinicalTrials.gov number, NCT01410409.)
TOTAL KNEE REPLACEMENT IS CONSIDERED to be an effective treatment for end-stage knee osteoarthritis. The number of total knee replacements performed each year in the United States has increased dramatically, from 31.2 per 100,000 person-years during the period 1971–1976 to 220.9 during the period 2005–2008. In 2012, more than 670,000 total knee replacements were performed in the United States alone, with corresponding aggregate charges of $36.1 billion. The number of total knee replacements is expected to increase as the average age of the population increases, which highlights the associated future economic burden.

Despite the large number of procedures performed annually, we are not aware of any high-quality randomized, controlled trials that have investigated the effectiveness of total knee replacement, as compared with nonsurgical interventions, as treatment for knee osteoarthritis. Recent research has provided substantial evidence to suggest moderate effectiveness of nonsurgical treatments for knee osteoarthritis, which has prompted an increase in early use of nonsurgical treatment. On the basis of the available evidence, clinical guidelines recommend a core treatment program that consists of exercise, education, dietary advice, biomechanical interventions such as insoles, and pharmacologic treatment. We conducted this randomized, controlled trial, involving patients with knee osteoarthritis who were eligible for unilateral total knee replacement, to investigate whether total knee replacement followed by a 12-week nonsurgical-treatment program that consists of exercise, education, dietary advice, use of insoles, and pain medication provides greater pain relief and improvement in function and quality of life than does nonsurgical treatment alone.

METHODS

Participants

We followed the guidelines for reporting parallel-group, randomized, controlled trials. From September 12, 2011, through December 6, 2013, we enrolled 100 patients with radiographically confirmed knee osteoarthritis (i.e., a score of ≥2 on the Kellgren–Lawrence scale, with scores ranging from 0 to 4 and a score of ≥2 indicating definite osteoarthritis) who were eligible for total knee replacement. Eligibility for total knee replacement was determined by one of nine experienced orthopedic surgeons at one of two specialized, public outpatient clinics at Aalborg University Hospital, Denmark (Frederikshavn and Farsoe clinics); 50 patients from each clinic were enrolled. Major exclusion criteria were a previous total replacement of the same knee, previous simultaneous total replacements of both knees, and knee pain during the previous week that the patient rated at higher than 60 mm on a 100-mm visual-analogue scale (with higher scores indicating worse pain).

Study Treatments

Patients were randomly assigned in a 1:1 ratio to undergo total knee replacement followed by 12 weeks of nonsurgical treatment (total-knee-replacement group) or to receive only the 12 weeks of nonsurgical treatment (nonsurgical-treatment group). Total knee replacement was performed in accordance with standard methods for insertion of a total cemented prosthesis with patellar resurfacing (NexGen CR-Flex or LPS-Flex Fixed Bearing Knee, Zimmer).

The 12-week nonsurgical-treatment program consisted of five interventions: exercise, education, dietary advice, use of insoles, and pain medication. To ensure proper standardization and to reduce the number of crossovers, the nonsurgical treatment was delivered to the two groups separately but identically, at the same facility, by specially trained physiotherapists and dietitians. This nonsurgical-treatment program has previously been shown to be more effective than usual care (which consisted of two leaflets with information and treatment advice) in a population of patients with knee osteoarthritis of a severity similar to that seen in our study participants. Further details about the nonsurgical-treatment program are provided in the Supplementary Appendix, available with the full text of this article at NEJM.org.

Exercise

The neuromuscular exercise training program, which has previously been shown to be feasible in patients with moderate-to-severe knee osteoarthritis who are eligible for total knee replace-
A Randomized Trial of Total Knee Replacement

ment, was administered in 1-hour, group-based, supervised sessions twice weekly for 12 weeks. The goal of the exercise program was to restore neutral, functional alignment of the legs by building compensatory functional stability and improving sensorimotor control. Neutral, dynamic alignment was emphasized, and each patient was monitored individually for exercise quality. Pain level was used to guide progression. After the 12-week training program, the patients underwent an 8-week transitional period, during which the exercise program was performed increasingly at home, to improve long-term adherence. To support adherence to exercise, a physiotherapist contacted the patients monthly by telephone until the 12-month follow-up assessment.

Education
The patients participated in two 1-hour educational sessions that focused on disease characteristics, treatments, and self-help strategies. The sessions actively engaged patients in the treatment of their knee osteoarthritis.

Dietary Advice
Patients with a body-mass index (the weight in kilograms divided by the square of the height in meters) of 25 or higher at baseline participated in a 12-week dietary weight-loss program, which was administered in four 30-to-60-minute sessions. The goal of the program was to reduce body weight by at least 5% and maintain the lower weight. The intervention included motivational interviewing, with instructions and guidance relevant to the individual participant. A dietitian contacted the patients by telephone for 30 minutes at weeks 26 and 39 after the initiation of the nonsurgical treatment to support adherence to the dietary program.

Insoles
The patients received individually fitted, full-length insoles with medial arch support (Formthotics Original Dual Medium [perforated], Foot Science International). Furthermore, a four-degree lateral wedge was added to the insoles of patients who were classified as having a knee-lateral-to-foot position; in such patients, the knee moves over, or lateral to, the fifth toe in three or more out of five trials of the single-limb mini-squat test.

Pain Medication
The patients were offered pain medication if an orthopedic surgeon considered it to be necessary for participation in the exercise program. A prescription (reassessed every 3 weeks) was provided for acetaminophen (1 g four times daily), ibuprofen (400 mg three times daily), and pantoprazole (20 mg daily), to be used as needed.

FOLLOW-UP ASSESSMENTS
Follow-up assessments were performed at 3, 6, and 12 months after the initiation of nonsurgical treatment. The assessments were performed at Aalborg University Hospital, Denmark, by a specially trained assessor who was not affiliated with the treatment sites and who was unaware of the treatment assignments. Before meeting with the assessor, all patients were instructed to cover the index knee from 15 cm above to 15 cm below the patella with three layers of white elastic tape to hide a potential scar after total knee replacement.

OUTCOMES
Primary Outcome
The prespecified primary outcome was the between-group difference in change from baseline to 12 months in the mean score on four Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales, covering pain, symptoms, activities of daily living, and quality of life (KOOS4). Each subscale consists of multiple items scored on a 4-point Likert scale; the KOOS4 ranges from 0 (worst) to 100 (best). KOOS is a valid, reliable, responsive measure of patient-reported outcomes during short-term and long-term follow-up for knee osteoarthritis and total knee replacement.

Secondary Outcomes
We also assessed the change from baseline to 12 months in five prespecified secondary outcomes. The first was the scores on all five KOOS subscales, including the KOOS4 subscales plus a fifth subscale covering function in sports and recreation (with scores on all subscales ranging from 0 [worst] to 100 [best]), to assist in the clinical interpretation of the primary outcome.
The second was the time on the timed up-and-go test — which measures the time (in seconds) taken to rise from a chair, walk 3.1 m (10 ft), return, and sit down — and the mean time on two 20-m walk tests; for both tests, a shorter time indicates better mobility. The third is the results of a general health assessment with the three-level version of the EuroQol Group 5-Dimension Self-Report Questionnaire (EQ-5D), including both the score on the EQ-5D descriptive index (ranging from −0.59 to 1.00) and the score on the EQ-5D visual-analogue scale (ranging from 0 to 100); higher scores indicate better quality of life. The descriptive index is based on a Danish “time trade-off” value set, a method used to evaluate the relative amount of time patients would be willing to sacrifice to avoid a certain poor health state. The fourth was weight (in kilograms), measured with the patient wearing no shoes or outerwear, at the same time of the day, with the use of the same digital scale (model 813, Seca). The fifth was the type, dose, and quantity of pain medication taken during the previous week; data on medication intake was recorded as “yes” or “no” for analytic purposes.

Adverse events and serious adverse events that occurred before the 12-month follow-up were identified in three ways: in hospital records, by self-report at follow-up visits, and by the physiotherapist. Adverse events were categorized as involving the index knee or sites other than the index knee, and serious adverse events were identified according to the definition established by the U.S. Food and Drug Administration.

STUDY OVERSIGHT

The study complied with the principles of the Declaration of Helsinki and was approved by the local ethics committee of the North Denmark Region (N-20110024). The study protocol (available at NEJM.org) has been published previously. None of the sponsors of this study were involved in the design or conduct of the study, the data analysis, or the writing of the manuscript. Foot Science International provided the insoles but was not otherwise involved in the study. The first author takes responsibility for the integrity and accuracy of the reported data and for the fidelity of the study to the protocol.

STATISTICAL ANALYSIS

A detailed statistical analysis plan was made publicly available before follow-up was completed and any analyses were performed. An independent statistician who was unaware of the group assignments performed all the analyses. To reduce the risk of bias during interpretation, blinded results from the analyses (with study groups labeled as group A and group B) were presented to all the authors, who agreed in writing on two alternative interpretations. Thereafter, the data manager broke the randomization code (see the Supplementary Appendix).

For KOOS and the KOOS subscale scores, a minimal clinically important difference of 10 is recommended and commonly used. We calculated that a sample size of 41 patients in each group would give the study 90% power to detect a 10-point greater improvement in KOOS and the KOOS subscale scores in the total-knee-replacement group than in the nonsurgical-treatment group (with a standard deviation of 14) at a two-sided significance level of 0.05. To account for possible crossovers before the 12-month follow-up and for missing data, 100 patients were enrolled.

The primary prespecified analysis was an intention-to-treat analysis; the intention-to-treat population included all 100 patients who underwent randomization. We also performed a prespecified per-protocol analysis; the per-protocol population included patients in both groups who had attended at least 75% of the supervised exercise sessions (≥18 of 24 sessions) and excluded patients in the nonsurgical-treatment group who underwent total knee replacement before the 12-month follow-up and those in the total-knee-replacement group who received only nonsurgical treatment.

Between-group comparisons of treatment effect for all primary and secondary outcomes, except for pain-medication use and adverse events, were performed with the use of a mixed-effects model, with patient as a random effect and time of assessment (baseline and 3, 6, and 12 months), study group (total-knee-replacement group or nonsurgical-treatment group), clinic (Frederikshavn or Farsoe), and baseline values of the outcome as fixed effects. Interaction between time of assessment and study group was also included in the model. Crude analyses...
A Randomized Trial of Total Knee Replacement

Figure 1. Enrollment, Randomization, Treatment, and Follow-up.

1475 Patients were assessed for eligibility

1348 Were not eligible for inclusion in the study
- 344 Were not eligible for total knee replacement
- 197 Had a Kellgren–Lawrence score of <2
- 50 Had previous bilateral total knee replacement
- 49 Had previous total replacement of the same knee
- 30 Had rheumatoid arthritis
- 117 Had knee pain during the previous week that was rated at >60 mm on a 100-mm visual-analogue scale
- 145 Were unable to come to the treatment site
- 180 Were unable to participate in the intervention
- 36 Had other reasons

127 Were eligible for inclusion in the study

100 Underwent randomization

127 Were eligible for inclusion in the study

12 Chose not to undergo total knee replacement
- 7 Chose not to undergo nonsurgical treatment
- 8 Chose not to undergo randomization

50 Were assigned to receive nonsurgical treatment

13 Underwent total knee replacement before the 12-mo follow-up
37 Did not undergo total knee replacement before the 12-mo follow-up

41 Attended 3-mo follow-up
- 9 Did not attend
 - 3 Had complications related to total knee replacement
 - 3 Canceled and were unable to be reached
 - 2 Were no longer interested
 - 1 Had personal or health issues

43 Attended 6-mo follow-up
- 7 Did not attend
 - 3 Had complications related to total knee replacement
 - 2 Were no longer interested
 - 1 Had personal or health issues
 - 1 Did not have the time

46 Attended 12-mo follow-up
- 4 Did not attend
 - 3 Were no longer interested
 - 1 Had complications related to total knee replacement

50 Were included in the intention-to-treat analysis
25 Were included in the per-protocol analysis
and analyses adjusted for time of assessment, clinic, baseline values of the outcome, and the interaction between time of assessment and study group were performed. To assess for superiority, mean between-group differences in changes from baseline and two-sided 95% confidence intervals were calculated.

We used a Poisson regression model, with robust error variance for the confidence intervals, to perform between-group comparisons of the relative risks associated with use of pain medication and the occurrence of adverse events.31 We also performed an as-treated analysis using a mixed-effects Poisson regression model, with patient as a random effect and robust error variance for the confidence intervals, to assess the relative risks associated with the occurrence of adverse events.31 In addition, we performed an exploratory analysis to estimate the number needed to treat with total knee replacement for one person to have a 15% improvement32,33 in KOOS4 and the KOOS subscale scores from baseline to 12 months.

A two-sided P value of less than 0.05 was considered to indicate statistical significance. All analyses were performed with the use of Stata software, version 13.0 (StataCorp).

Results

Enrollment and Follow-up

A total of 100 patients underwent randomization (Fig. 1); 49 of 50 patients (98%) in the nonsurgical-treatment group and 46 of 50 patients (92%) in the total-knee-replacement group completed the 12-month follow-up assessment. In the nonsurgical-treatment group, 13 of 50 patients (26%) had a total knee replacement before the 12-month follow-up (mean time after the initiation of nonsurgical treatment, 6.9 months; range, 2.6 to 11.5). In the total-knee-replacement group, 1 of 50 patients (2%) decided not to undergo total knee replacement and received only the nonsurgical treatment. All 100 patients were included in the intention-to-treat analysis, whereas 25 of 49 patients (51%) in the nonsurgical-treatment group and 26 of 46 patients (57%) in the total-knee-replacement group were included in the per-protocol analysis. The mean follow-up time after the initiation of nonsurgical treatment was 12.4 months in the nonsurgical-treatment group and 12.1 months in the total-knee-replacement group.

Patient Characteristics

Baseline characteristics were similar in the two study groups (Table 1). The mean length of stay in the hospital after total knee replacement was 4.6 days in Frederikshavn and 3.1 days in Farsø.34 Adherence to the nonsurgical-treatment program was moderate to high in both groups (Table S8 in the Supplementary Appendix). The

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Nonsurgical-Treatment Group (N = 50)</th>
<th>Total-Knee-Replacement Group (N = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex — no. (%)</td>
<td>30 (60)</td>
<td>32 (64)</td>
</tr>
<tr>
<td>Age — yr</td>
<td>67.0±8.7</td>
<td>65.8±8.7</td>
</tr>
<tr>
<td>Body-mass index†</td>
<td>32.0±5.8</td>
<td>32.3±6.2</td>
</tr>
<tr>
<td>Kellgren–Lawrence score — no. (%)‡</td>
<td>2 (5)</td>
<td>7 (14)</td>
</tr>
<tr>
<td>3</td>
<td>21 (42)</td>
<td>21 (42)</td>
</tr>
<tr>
<td>4</td>
<td>24 (48)</td>
<td>22 (44)</td>
</tr>
<tr>
<td>KOOS scores§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOOS4</td>
<td>48.5±11.4</td>
<td>47.4±13.4</td>
</tr>
<tr>
<td>Pain</td>
<td>49.5±13.1</td>
<td>48.6±17.5</td>
</tr>
<tr>
<td>Symptoms</td>
<td>58.3±15.2</td>
<td>54.0±15.0</td>
</tr>
<tr>
<td>Activities of daily living</td>
<td>53.5±14.2</td>
<td>55.0±17.0</td>
</tr>
<tr>
<td>Quality of life</td>
<td>32.7±13.3</td>
<td>32.3±15.3</td>
</tr>
<tr>
<td>Sports and recreation</td>
<td>16.7±15.1</td>
<td>18.0±14.7</td>
</tr>
<tr>
<td>Time on the timed up-and-go test — sec</td>
<td>8.6±2.1</td>
<td>9.4±2.4</td>
</tr>
<tr>
<td>Time on the 20-m walk tests — sec</td>
<td>12.2±2.6</td>
<td>13.4±3.7</td>
</tr>
<tr>
<td>EQ-5D scores¶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive index</td>
<td>0.68±0.147</td>
<td>0.66±0.156</td>
</tr>
<tr>
<td>Visual-analogue scale</td>
<td>66.8±16.5</td>
<td>66.3±19.1</td>
</tr>
<tr>
<td>Used pain medication in the past week — no. (%)</td>
<td>29 (58)</td>
<td>33 (67)</td>
</tr>
</tbody>
</table>

*Plus–minus values are means ±SD. No significant differences between groups in the reported characteristics were found at baseline. For a complete table of baseline characteristics, see the Supplementary Appendix.

†The body-mass index is the weight in kilograms divided by the square of the height in meters.

‡Scores on the Kellgren–Lawrence scale range from 0 to 4, with a score of 2, 3, or 4 indicating definite osteoarthritis and higher scores indicating more severe disease.

§Scores on the Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales range from 0 (worst) to 100 (best). KOOS4 is the mean score on the pain, symptoms, activities of daily living, and quality of life subscales.

¶The three-level version of the EuroQol Group 5-Dimension Self-Report Questionnaire (EQ-5D) includes both the EQ-5D descriptive index (with scores ranging from −0.59 to 1.00) and the EQ-5D visual-analogue scale (with scores ranging from 0 to 100); higher scores indicate better quality of life.

‖In the total-knee-replacement group, a total of 49 patients responded to the question about use of pain medication.
number of treatments or consultations with practitioners other than those given in the study was similar in the two groups (Table S9 in the Supplementary Appendix).

OUTCOMES
In the intention-to-treat analysis, the total-knee-replacement group had a significantly greater improvement in the KOOS4 score than did the nonsurgical-treatment group, with a crude mean difference of 16.5 (95% confidence interval [CI], 10.2 to 22.7) and an adjusted mean difference of 15.8 (95% CI, 10.0 to 21.5). In the nonsurgical-treatment group, the increase in the KOOS4 from baseline to month 12 was 16.0 (95% CI, 10.1 to 21.9), whereas in the total-knee-replacement group, the increase was 32.5 (95% CI, 26.6 to 38.3) (Table 2 and Fig. 2). Furthermore, as compared with the nonsurgical-treatment group, the total-knee-replacement group had significantly greater improvements in the scores on all five KOOS subscales, the times on the timed up-and-go test and 20-m walk tests, and the scores on the EQ-5D descriptive index (Table 2, and Fig. S1 in the Supplementary Appendix). (Additional results, including those related to the use of pain medication, are provided in the Supplementary Appendix.)

Table 2. Outcomes at 12 Months.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Total No. of Assessments*</th>
<th>Mean Improvement in Outcome from Baseline to 12 Mo (95% CI)</th>
<th>Between-Group Difference in Mean Improvement (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonsurgical-Treatment</td>
<td>Total-Knee-Replacement</td>
<td>Crude</td>
</tr>
<tr>
<td></td>
<td>Group</td>
<td>Group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonsurgical-Treatment</td>
<td>Total-Knee-Replacement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOOS4</td>
<td>179</td>
<td>193</td>
<td>16.0 (10.1 to 21.9)</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOOS subscale scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>180</td>
<td>194</td>
<td>17.2 (10.4 to 24.1)</td>
</tr>
<tr>
<td>Symptoms</td>
<td>179</td>
<td>194</td>
<td>11.4 (4.4 to 18.4)</td>
</tr>
<tr>
<td>Activities of daily living</td>
<td>180</td>
<td>193</td>
<td>17.6 (11.4 to 23.9)</td>
</tr>
<tr>
<td>Quality of life</td>
<td>180</td>
<td>194</td>
<td>17.8 (11.2 to 24.4)</td>
</tr>
<tr>
<td>Sports and recreation</td>
<td>177</td>
<td>193</td>
<td>19.3 (10.8 to 27.7)</td>
</tr>
<tr>
<td>Time on the timed up-and-go test (sec)</td>
<td>163</td>
<td>185</td>
<td>−1.2 (−1.8 to −0.6)</td>
</tr>
<tr>
<td>Time on the 20-m walk tests (sec)</td>
<td>163</td>
<td>185</td>
<td>−1.0 (−1.3 to −0.4)</td>
</tr>
<tr>
<td>EQ-5D scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive index</td>
<td>178</td>
<td>194</td>
<td>0.115 (0.063 to 0.166)</td>
</tr>
<tr>
<td>Visual-analogue scale</td>
<td>180</td>
<td>193</td>
<td>10.2 (4.6 to 15.7)</td>
</tr>
<tr>
<td>Weight (kg)‡</td>
<td>134</td>
<td>160</td>
<td>−2.6 (−3.9 to −1.4)</td>
</tr>
</tbody>
</table>

* There were 200 possible assessments for each study group (50 each at baseline and at 3, 6, and 12 months).
† The results were adjusted for time of assessment (baseline and 3, 6, and 12 months), clinic (Frederikshavn or Farsoe), baseline values, and the interaction between time of assessment and study group.
‡ Data are presented only for patients with a body-mass index of 25 or higher at baseline (43 patients in the nonsurgical-treatment group and 39 patients in the total-knee-replacement group).
Serious adverse events were more common in the total-knee-replacement group than in the nonsurgical-treatment group (8 vs. 1 involving the index knee \([P=0.05]\), and 24 vs. 6 overall \([P=0.005]\)) (Table 3). In the total-knee-replacement group, the two most common serious adverse events involving the index knee were deep venous thrombosis (in 3 patients) and stiffness requiring brisement forcé (in 3 patients).

The per-protocol analysis also showed that the total-knee-replacement group had a significantly higher increase in the KOOS, than did the nonsurgical-treatment group (Table S3 in the Supplementary Appendix). The per-protocol analysis of the secondary outcomes yielded results similar to those of the intention-to-treat analysis, except that there was a significant between-group difference in the scores on the EQ-5D visual-analogue scale and not in the scores on the KOOS symptoms subscale (Table S3 in the Supplementary Appendix).

In the as-treated analysis of adverse events, serious adverse events were more likely to occur after total knee replacement had been performed (9 vs. 0 involving the index knee \([P<0.001]\), and 24 vs. 6 overall \([P=0.02]\)) (Table S7 in the Supplementary Appendix). The number needed to treat with total knee replacement for a 15% improvement from baseline to 12 months in KOOS4 was 5.7 in the intention-to-treat analysis (Table S2 in the Supplementary Appendix) and 6.0 in the per-protocol analysis (Table S6 in the Supplementary Appendix).

Discussion

This randomized, controlled trial showed that total knee replacement followed by nonsurgical treatment is more efficacious than nonsurgical treatment alone in providing pain relief and improving function and quality of life after...
12 months in patients with knee osteoarthritis who are eligible for unilateral total knee replacement. However, clinically relevant improvements were noted in both groups, and patients who underwent total knee replacement had a higher number of serious adverse events.

We are not aware of any previous or ongoing randomized trials investigating the effectiveness of total knee replacement, despite its wide and increasing use. Previous reports on the effects of total knee replacement have been case series, without a control group for comparison.

Both groups in our study had substantial improvement with respect to most outcomes, and only 26% of the patients who were assigned to receive nonsurgical treatment alone underwent total knee replacement in the following year. Previous reports have suggested a benefit of nonsurgical treatment in patients with moderate-to-severe knee osteoarthritis who are eligible for total knee replacement. Even for patients progressing to surgery, participation in supervised exercise before surgery has been associated with a faster postoperative recovery. The benefits and harms of the respective treatments underscore the importance of considering patients’ preferences and values during shared decision making about treatment for moderate-to-severe knee osteoarthritis.

Our study has limitations. We did not include a sham-surgery control group; since surgery and, to a lesser extent, nonsurgical treatments are associated with placebo effects, the findings in this study may overestimate effects attributable to the specific treatments and to surgery in particular. The scores on the KOOS pain subscale that were obtained before surgery were similar to those obtained in previous studies of total knee replacement and indicated mild-to-severe pain during activities, but it is not known whether our results are generalizable to patients with more severe pain. The intensity of nonsurgical treatment may have differed between groups owing to differences in clinical status at the time treatment was initiated. However, the intervention was standardized and administered in both groups by the same physiotherapists and dietitians. Since all patients received multimodal nonsurgical treatment, it is not possible to separate the effects of the individual modes of treatment. The combination of nonsurgical treatments that we administered complies with international recommendations on the treatment of knee osteoarthritis, which increases the generalizability of the results.

In conclusion, our results show that total knee replacement followed by nonsurgical treatment is superior to nonsurgical treatment alone in providing pain relief and improving function and quality of life after 12 months in patients with moderate-to-severe knee osteoarthritis who are eligible for unilateral total knee replacement. However, total knee replacement is associated with a higher number of serious adverse events, and most patients who were assigned to receive nonsurgical treatment alone did not undergo total knee replacement before the 12-month follow-up and had clinically relevant improvements.

Supported by the Obel Family Foundation, the Danish Rheumatism Association, the Health Science Foundation of the North Denmark Region, Foot Science International, Spar Nord Foundation, the Bevica Foundation, the Association of Danish Physiotherapists Research Fund, the Medical Specialist Heinrich Kopp’s Grant, and the Danish Medical Association Research Fund.

No potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank Prof. Jonas Ranstam (Lund University and Skåne University Hospital, Lund, Sweden) for statistical advice; Martin Berg Johansen, M.Sc. (Department of Clinical Medicine, Aalborg University, Denmark) for statistical advice and performing the statistical analyses; members of the Department of Occupational Therapy and Physiotherapy, Aalborg University Hospital, Denmark, for allowing us to use their facilities for the treatment and outcome assessments; the orthopedic surgeons and other healthcare personnel from the Department of Orthopedic Surgery, Aalborg University Hospital, for their involvement in the recruitment of patients for the two study groups; project workers Anders Bundgaard Lind, Anders Nørge Jensen, Anna Emilie Livbjerg, Dorthe Rasmussen, Helle Mohr Brecher, Henriette Duve, Janus Duus Christiansen, Josephine Nielsen, Kate Mcgirr, Lasse Lønsøe, Lonneke Hjermitslev, Malene Daugaard, Niels Balslev, Rikke Elholm Jensen, and Svend Lyhne for helping with administrative tasks, data collection, data entry, and treatment; and the study patients, whose participation made the trial possible.

REFERENCES

4. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the

1605
21. Collins NJ, Mira S, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) subjective knee evaluation form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-Ps), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 2011;63 suppl 11:s208-322.
34. Danish Knee Arthroplasty Register. Annual report 2013. Århus, Denmark: Den Ortopædiske Fælleds database, 2013. (In Danish.)
Copyright © 2015 Massachusetts Medical Society.